Space Transportation System
Stack Assembly

Development of the Space Shuttle began in 1969 and a contract for the construction of the Space Shuttle was awarded in July 1972. The Space Shuttle, in its launch configuration, or Stack Assembly, was comprised of four main components: the Orbiter Vehicle (OV), built by North American Rockwell (later Boeing); three Space Shuttle Main Engines (SSMEs), built by Rocketdyne (later Boeing); two Solid Rocket Boosters (SRB) built by Thiokol (later ATK Launch Systems); and an External Tank (ET) built by Martin Marietta (later Lockheed Martin). Of these four components only the external tank was not reusable.

During prelaunch preparations in the Vehicle Assembly Building (VAB), the SRBs were attached to the Mobile Launch Platform (MLP) at their aft skirts with four trangle nuts that were covered by explosive charges at liftoff. The ET was then attached to the SRBs at the booster skirt attachment rings and at a point near the SRBs forward skirt. The Orbiter was then mated to the MLP/ET assembly at the ET via attachment between the propellant and electrical umbilical connections on the Orbiter's aft fuselage and an attachment behind its nose landing gear door on the forward fuselage. As a result, the SRBs carried the entire weight of the stack and transferred it through their structure to the MLP.

A complete Stack Assembly measured 182.2 feet from the base of the SRBs' aft skirt to the nose of the ET. The depth of the assembly, from the exterior edge of the ET to the tip of the Orbiter's vertical stabilizer, was 78.1 feet and the width of the assembly was 78.06 feet, from wing tip to wing tip of the Orbiter.

When the prelaunch activities at the Vehicle Assembly Building were complete, a Crawler Transporter was used to lift the MLP/ET, with the Stack Assembly attached, and carry it out to launch complex 39 A or B for further launch preparations.

At launch, the two SRBs provided the majority of the thrust required for liftoff. With a combined thrust of 66,000 pounds of force, the SRBs contributed approximately 72% of the power through the first launch stage, which ended at SRB separation, about 2 minutes after launch. After separation and at a predetermined altitude, pyrotechnics were deployed to slow the boosters' descent for safe splashdown in the ocean about 141 nautical miles downrange, where they were retrieved, refurbished, and reused for subsequent launches.

The Orbiter's Main Propulsion System consisted of the External Tank, propellant feed and control systems, and three SSMEs which produced a combined thrust of 1,161,400 pounds of force at sea level. The liquid hydrogen fuel and liquid oxygen oxidizer were stored in the ET and supplied the SSMEs with propellant from approximately 6 seconds before liftoff until Main Engine Cut Off (MECO) and Jettison, approximately 10 minutes, and 30 seconds after launch. Under the influence of gravity, the ET would fall towards Earth, eventually disintegrating as it reentered Earth's atmosphere.

After MECO and ET jettison the SSMEs were no longer used. The shuttle relied on the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS) during the orbital phase for velocity changes. The OMS was focused in two pods on the aft section of the Orbiter and was located just past the nose of the Orbiter. The RCS was used for small velocity and orientation adjustments and the two OMS pods were used for large velocity changes.

The Shuttle was designed to transport payloads into low Earth orbit, between 100 and 300 nautical miles, and have nominal mission durations of 4 to 16 days in space. The Orbiter provided accommodation to support up to seven astronauts, four assisting on the flight deck during the launch while another three were seated in the mid-deck area, although eight astronauts flew on STS-64. After orbital insertion the flight deck, mid deck, additional hardware and software were configured for on-orbit activities.

At the conclusion of orbital operations the payload bay doors were closed, the Orbiter was turned to a tail-first attitude, the OMS engines were fired to reduce the Orbiter's velocity and permit descent; then it was turned back to a nose-first attitude for reentry. During reentry the aft RCS was used to control the roll, pitch and yaw until the atmospheric density was sufficient for the aerosurfaces to become effective. The Orbiter would perform a series of banking maneuvers, using atmospheric drag, to decrease its velocity. Combined with the descent angle and controlled drag these maneuvers reduced the velocity to about 230 mph at main landing gear touchdown.

Spacecraft recovery operations began as soon as the Orbiter stopped rolling. Ground support personnel, wearing protective gear, approached the vehicle with sensors to determine if the area around the Orbiter was safe. After determining the area safe for operations, ground support equipment was attached to the orbiter to begin purging systems, disarming reentry heat and preparing for crew egress. After crew egress the spacecraft was powered down and transported to the Orbiter Processing Facility. If the shuttle landed at sites other than Kennedy Space Center (KSC) the spacecraft was carefully inspected and prepared for making to the Shuttle Carrier Aircraft and ferried back to KSC for further processing and prelaunch preparations for its next scheduled mission.

This recording project is part of the Historic American Engineering Record (H AER), a long-range program to document historically significant engineering, industrial, and maritime works in the United States. The H AER program is administered by the National Park Service, U.S. Department of the Interior, The Space Transportation System recording project was completed in 2011 by the Space Shuttle Program Transition and Retirement Office of the Johnson Space Center (JSC), with the guidance and assistance of Barbara Severance, Integration Manager, JSC, Jennifer Groman, Federal Preservation Officer, NASA Headquarters and Ralph Allen, Historic Preservation Officer, Marshall Space Flight Center. The field work and measured drawings were prepared under the general direction of Richard D'Onor, Chief, Heritage Documentation Programs, National Park Service. The project was managed by Thomas Birnbaum, H AER Architect and Project Leader. The Space Transportation System Recording Project consisted of architectural dendromators, John Wachtel, Iowa State and Joseph Klimko, Nichols Institute of Technology. The documentation is based on high-definition laser scans provided by Smart GeoMetrics, Houston, Texas and documentation provided by NASA's Headquarters, Johnson Space Center and Marshall Space Flight Center, Witten Historical and descriptive data was provided by Archiarchaeological Consultants Inc., Sarasota, Florida. Large-format photographs were produced by NASA's Imaging Lab at Johnson Space Center with supplemental images provided by Jl Love, H AER photographer.
FULL STACK ISOMETRIC
Although liftoff begins at the ignition of the Solid Rocket Boosters (T - 00:00), the Shuttle’s three Main Engines ignite 6.6 seconds prior to this. This gives the SSME’s time to ramp up to 100% thrust, and for the Shuttle’s computers to give the “go for launch” order to the SRB ignition sequence. Once that sequence begins, there is no going back. The shuttle will lift off the launch pad and begins its ascent. Just after the Shuttle clears the launch tower (T+ 00:07) the vehicle initiates a roll, pitch and yaw sequence. This aligns the Shuttle to the desired orbital plane and allows for clearer communication between the shuttle and Houston.

Around T+00:30 the Shuttle’s Main Engines (followed shortly by the SRB’s) are throttled down to ~65%. This reduces the forces exerted on the craft caused by aerodynamic pressure. The duration of maximum aerodynamic pressure can vary, but thrust resumes to 100% around T+01:30. This is also known as the “thrust bucket” due to its graphed appearance. Solid Rocket Booster separation occurs near T+02:00, using small thrusters to ensure a clean break away from the external tank. The SRB’s will fall toward the Atlantic Ocean, where they are retrieved for re-use. Some missions may call for an Orbital Maneuvering Systems (OMS) assist burn, where excess fuel could be burned off to save weight. The quantity burned and timing could vary according to mission specific conditions.

At ~T+05:30 the Shuttle performs a “roll to heads up” (RTHU) maneuver. This realigns the Shuttle to strengthen communication signals, this time with a satellite above. Prior to STS-87, this maneuver was not necessary because of a ground relay station in Bermuda, which has since closed. Main Engine cutoff occurs at T+08:30, followed by External Tank (ET) separation shortly thereafter. The ET will fall back to earth and separate upon reentry. At this point the OMS burn and RCS systems will nudge the Shuttle into its orbital path.
POST ATMOSPHERIC INSERTION PROCESS

1) RECONFIGURE TO ON-ORBIT SOFTWARE AND GPC CONFIG.
2) ACTIVATE RADIATORS.
3) OPEN PAYLOAD BAY DOORS.
4) PURGE THE FUEL CELLS.
5) DOFF AND STOW LES, RECONFIGURE COCKPIT FOR ORBIT OPERATIONS.

POST INSERTION PROCESS

BEGIN - PHASE I: ENTRY INTERFACE

1A - NOSE INCLINE
1B - BANK MANEUVERS
1C - CONSTANT DRAG PHASE
1D - TRANSITION PHASE

END - PHASE I

BEGIN - PHASE II: T.A.E.M. INTERFACE

(TERMINAL AREA ENERGY MANAGEMENT)

2A - S-TURN MANEUVER
2B - ACQUISITION
2C - HEADING ALIGNMENT
2D - PREFINAL

END - PHASE II

BEGIN - PHASE III: APPROACH + LANDING

3A - TRAJECTORY CAPTURE
3B - OUTER GUIDESLOPE (OGS)
3C - PREFLARE + INNER GUIDESLOPE (IGS)
3D - FINAL FLARE
3E - TOUCHDOWN

END - POST INSERTION PROCESS

ORBITER ENTRY + LANDING

DE-ORBIT BURN

DIST : 28,865 km (12,966 miles)
ALT : 282 km (175 miles)
SPD : 26,498 km/h (16,465 mph)

AT PHASE I BEGIN:

DIST : 7,600 km (4,722 miles)
ALT : 122 km (76 miles)
VEL : 25,898 km/h (16,093 mph)

AT PHASE II BEGIN:

DIST : 90 km (56 miles)
ALT : 24 km (15 miles)
VEL : 2700 km/h (1,678 mph)

AT PHASE III BEGIN:

DIST : 12 km (7.5 miles)
ALT : 3.5 km (2.1 miles)
VEL : 682 km/h (424 mph)

AT TOUCHDOWN:

DIST : 689 km (2,261 ft.) *FROM END OF RUNWAY
ALT : 0 km (0 miles)
VEL : 346 km/h (215 mph)

THIS PAGE IS NOT DRAWN TO SCALE
After the Solid Rocket Boosters (SRB) separated from the stack they began their decent into the ocean. At a predetermined altitude, parachutes were deployed to lessen the impact of splashboard. Two recovery ships, "Freedom Star" and "Liberty Star", then sailed out to recover and return the SRBs to Kennedy Space Center (KSC) for processing.

After the Main Engine Cut Off sequence the External Tank (ET) is jettisoned on command from the orbiter. The ET descended under the influence of Earth's gravity and disintegrated as it re-entered the atmosphere. The Michoud Assembly Facility in New Orleans, LA fabricated new ETs for each Shuttle Launch and shipped them by barge to Kennedy Space Center.

Spacecraft recovery operations began immediately after wheel stop. Systems were secured, crews disembarked, payloads, hazardous components and propulsion elements were removed, inspected and/or refurbished. Afterwards, pre-mate preparations began for the next mission of that Orbiter.

While landings primarily occurred at Kennedy Space Center, Edwards Air Force Base in California often served as an alternate landing site. Other contingency sites were also provided in the event the Orbiter must return to Earth in an emergency.

After the Shuttle touched down at Edwards Air Force Base it was then moved by rail to Clearfield & Brigham City, Utah. Here, the shuttle was placed on a railcar and shipped to Kennedy Space Center (KSC).
Space Transportation System
Orbiter Discovery (OV-103)

Discovery (OV-103), NASA's third Orbiter to join the fleet, was named after one of the two ships that were used by British explorer James Cook in the 1770s. It was the first Orbiter built solely for operations and not for testing and benefited from the knowledge gained from the construction, assembly, and testing of the Orbiter Enterprise. Columbus and Challenger. When it was completed, Discovery was almost 7,000 pounds lighter than Columbia.

Discovery arrived at the Kennedy Space Center in Florida on November 8, 1983. After checkout, testing, and processing, it was launched on Aug. 30, 1984, for its first mission, 41-D, to deploy three communications satellites. Since its inaugural flight, Discovery has completed 59 missions, more than any other Orbiter in NASA's fleet, carried 252 crew members, spent 365 days in space and travelled over 148 million miles.

Just like all of the orbiters, it has undergone some major modifications and upgrades over the years. Most of the improvements were made during periods when the Orbiters were out of flight rotation for their Orbiter Maintenance Down Periods or for their Orbiter Major Modifications which lasted from a few months to over a year. Additional improvements were made during both Return to Flight work flows. A sample of the changes included improvements in steering and braking, the addition of the drag chute system, weight-saving modifications to the Thermal Protection System, installation of the Multi-Deck Electronic Display Subsystem in the flight deck cockpit and the installation of an external wirelock and docking system to facilitate docking with the International Space Station.

This recording project is part of the Historic American Engineering Record (HAER), a long-range program to document historically significant engineering, industrial, and maritime works in the United States. The HAER program is administered by the National Park Service, U.S. Department of the Interior. The Space Transportation System recording project was cosponsored during 2011 by the Space Shuttle Program Transition and Retirement Office of the Johnson Space Center (JSC), with the guidance and assistance of Barbara Severance, Integration Manager, JSC, Jennifer Groman, Federal Preservation Officer, NASA Headquarters and Ralph Allen, Historic Preservation Officer, Marshall Space Flight Center. The fieldwork and measured drawings were prepared under the general direction of Richard O'Connor, Chief, Heritage Documentation Programs, National Park Service. The project was managed by Thomas Behrens, HAER Architect and Project Leader. The Space Transportation System Recording Project consisted of architectural drafters, John Wacholtz, Iowa State University and Joseph Knebel, Illinois Institute of Technology. The documentation is based on high-saturation color scans provided by Smart ColorScan, Houston, Texas and documentation provided by NASA's Headquarters, Johnson Space Center and Marshall Space Flight Center. Written historical and descriptive data was provided by Archaeological Consultants Inc., Sarasota, Florida. Large-format photographs were produced by NASA's Imaging Lab at Johnson Space Center with supplemental images provided by Jim Lore, HAER photographer.
PORT ELEVATION
THE LOWER HALF OF THIS DRAWING SHOWS TILE INFORMATION GATHERED BY HIGH DEFINITION LASER SCANNING. THE CONTRAST HAS BEEN MODIFIED TO BETTER ILLUSTRATE THE WEAR ON THE THERMAL TILES OVER TIME. ALL 24,000+ TILES WERE NOT DOCUMENTED, HOWEVER THE OVERALL PATTERN CAN BE DISCERNED.

BOTTOM PLAN
The aft station has two overhead and aft viewing windows for viewing and orbital operations. The aft flight deck station also contains displays and controls for the Reaction Control System, the Orbiter Docking System, Payload Deployment and Retrieval System, including the Remote Manipulator System, Payload Bay Door operations and closed circuit television operations.

Directly beneath the flight deck is the middeck. Access to the middeck is through two inter-deck openings, which measure 26x28 inches. Normally the right inter-deck opening is closed and the left is open. A ladder attached to the left inter-deck access allows passage in 1-G conditions and the Orbiter in horizontal position. The middeck provides the crew’s sleep, work and living accommodations and contains three avionics equipment bays. Attached to the aft bay on the port side of the vehicle is the waste management compartment and closeouts which create a stowage compartment known as volume 3B. Just forward of the waste management system is the side hatch. The completely stripped middeck is approximately 160 square feet; the gross mobility area is approximately 100 square feet.

The flight deck is the uppermost compartment of the crew cabin and contained the Orbiter cockpit and aft station. The commander’s and pilot’s seats and work stations are positioned side by side in the cockpit section of the flight deck. These stations have controls and displays for controlling the vehicle throughout all mission phases in addition to six windows to observe orbit operations. Directly behind and to the sides of the commander and pilot centerline are the mission specialist seats and stations.
CREW CABIN SECTIONS

SECTION A-A (LOOKING FORWARD)
- PILOT STATION
- COMMANDER STATION
- MISSION STATION
- PAYLOAD STATION
- PRIMARY INTERDECK ACCESS
- STAR TRACKER WELL

SECTION B-B (LOOKING AFT)

SECTION C-C (LOOKING PORT)
- OBSERVATION WINDOWS
- PILOT STATION
- COMMANDER STATION
- MISSION STATION
- PAYLOAD STATION
- PRIMARY INTERDECK ACCESS
- STAR TRACKER WELL

SECTION D-D (LOOKING STARBOARD)
- PAYLOAD HANDLER
- MODULAR STORAGE LOCKERS
- AVIONICS BAY
- SIDE HATCH
- WASTE MANAGEMENT COMPARTMENT
- AIRLOCK ACCESS

SCALE: 1/2" = 1'-0"
The payload deployment and retrieval system (PDRS) consisted of the hardware, software, and interfaces required to remotely hold and control the movements of a specified object, usually a payload, and to remotely observe or monitor objects or activities.

The Remote Manipulator System (RMS) was installed on the port sill-longeron of the orbiter payload bay for those missions which required it. The RMS was capable of deploying or retrieving payloads weighing up to 65,000 pounds. The RMS could also retrieve and deploy satellites, provide a mobile extension for extravehicular activity (EVA), and be used as an inspection aid along with the orbiter boom sensor system which allowed the crew to view the orbiter or payload’s surfaces through television cameras.

Non-deployable payloads were retained by bolted passive retention devices, and deployable payloads were secured by motor driven active retention devices. Payloads were secured in the orbiter payload bay with the payload retention system or were equipped with their own unique retention systems. Attachment points in the payload bay were in 3,933 inch increments along the left and right side longerons and along the bottom centerline. Of the potential 172 attach points on the longerons, 48 were unavailable because of their proximity to spacecraft hardware.

Bridge fittings were used to react to the load imparted to the orbiter structure by the payload, and provided a structural interface for both the payload retention latch assemblies (PRLA) and active keel actuators (AKA).

The payload deployment and retrieval system (PDRS) was equipped with a remote manipulator system (RMS) which allowed the crew to view the orbiter or payload’s surfaces through television cameras.
The orbiter’s RCS consisted of forward and aft control jets, propellant storage tanks, and distribution networks located in three vehicle modules: forward, left, and right. The forward module was contained in the nose area, forward of the cockpit windows. The left and right (aft) modules were located with the Orbital Maneuvering System (OMS) in the left and right OMS/RCS pods located on the sides of the vertical stabilizer. Each RCS consisted of high pressure gaseous helium storage tanks, pressure regulation and relief systems, a fuel and oxidizer tank, a propellant distribution system, reaction control jets, and electrical jet and pod heaters.

The OMS provided propulsion for the Orbiter during the orbit phase of flight. The OMS is used for orbit insertion, orbit circulation, orbit transfer, rendezvous, and deorbit. Each OMS pod provided more than 1,000 pounds of propellant to the RCS. Amounts available for crossfeed depended on loading and number of OMS starts during the mission.

OMS AND RCS
The thermal protection system (TPS) was a passive system that consisted of various materials applied externally to the outer aluminum and graphite-epoxy skin of the Orbiter to prevent the skin from exceeding 350° F, primarily during Orbiter reentry.

The TPS materials were designed to be reusable for up to 100 missions with routine refurbishment and maintenance. In addition to being durable and designed to withstand high reentry temperatures, these materials could also withstand the extremely cold temperatures around minus 250° F. They were exposed to in the space environment. Because the TPS was the outermost layer, it also established the aerodynamic profile of the Orbiter in addition to acting as the heat sink.
ENVIRONMENTAL CONTROL AND LIFE SUPPORT SYSTEMS

THE PRESSURE CONTROL SYSTEM MAINTAINS THE CRYO COMPARTMENT AT 14.7 PSIA WITH A BREATHABLE MIXTURE OF OXYGEN AND NITROGEN. NITROGEN IS ALSO USED TO PRESSURIZE THE SUPPLY AND WASTEWATER TANKS.

THE ATMOSPHERIC REVITALIZATION SYSTEM USES AIR CIRCULATION AND WATER COOLANT LOOPS TO REMOVE HEAT, CONTROL HUMIDITY, AND CLEAN AND PURIFY CABIN AIR.

THE ACTIVE THERMAL CONTROL SYSTEM CONSISTS OF TWO FREON LOOPS THAT COLLECT WASTE HEAT FROM THE ORBITER SYSTEMS AND TRANSFER THE HEAT OVERBOARD.

THE SUPPLY AND WASTE WATER SYSTEM STORES WATER PRODUCED BY THE FUEL CELLS FOR DRINKING, PERSONAL HYGIENE, AND ORBITER COOLING. THE WASTEWATER SYSTEM STORES CRYO LIQUID WASTE AND WASTEWATER FROM THE HUMIDITY SEPARATOR. THE SYSTEM ALSO HAS THE CAPABILITY TO DUMP SUPPLY AND WASTEWATER OVERBOARD.

ELECTRICAL POWER SYSTEMS

THE PRESSURE CONTROL SYSTEM HEALTH COVERS SSME GIMBAL, SSME CONTROL VALVES, AEROSURFACES, UMBILICAL RETRACT, EMBRACING BRACES, NOSE WHEEL STEERING, FUEL CELL NO. 1, FUEL CELL NO. 2, FUEL CELL NO. 3, HYDRAZINE FUEL TANK NO. 1, HYDRAZINE FUEL TANK NO. 2, HYDRAZINE FUEL TANK NO. 3, HYDRAZINE FUEL TANK NO. 4, HYDRAZINE FUEL TANK NO. 5, APUNO. 1, APUNO. 2, APUNO. 3.
Space Transportation System
Solid Rocket Boosters

During the thirty year operation of the Space Transportation System, the Solid Rocket Boosters (SRBs) were the largest solid-propellant rockets ever used, the first designed for reuse, and the only solid-propellant rocket motors ever certified for manned spaceflight.

Each SRB measured about 149 feet long and 12 feet in diameter and could generate approximately 3,300,000 pounds of thrust at sea level. The SRBs were used as matched pairs, and each was made up of four solid rocket motor segments. The boosters were matched by loading each of the four motor segments 18 pounds from the same batch of propellant to minimize any thrust imbalance. The propellant mixture consisted of aluminum powder fuel, ammonium perchlorate oxidizer, iron oxide catalyst, a synthetic polymer binder agent, and a epoxy curing agent. The propellant was molded in a star-shaped perforation on the forward motor segment and a double-rounded cone perforation in the aft segment and aft closure. This configuration provided high thrust at ignition and reduced thrust approximately 50 seconds after launch, during the period of maximum dynamic pressure on the stack assembly.

The segmented-casing design assured maximum flexibility in fabrication and ease of transportation and handling. Once each segment was insulated, cast with propellant and flashid, the segments were shipped from ATK's manufacturing facility in Utah to Kennedy Space Center (KSC) in Florida. On three specially designed, heavy-duty covered rail cars, the KSC, they were stacked and assembled into the flight configuration. In addition to the four fueled segments there was the forward section and an aft section. The forward section contained avionics systems, electronic assemblies integrated with the aft segment and descent parachutes.

The aft segment contained an electronic assembly that sends and receives signals to and from the avionics system in the forward segment, the rocket motor's expansion nozzle and mechanisms for the guidance of the nozzle, The SRB nozzle had an angle of 7.75 to 1 expansion ratio and was steadied with a sacrificial carbon fiber that was charred and eroded during flight. The nozzle could glide up to 8 degrees for thrust vector control. To activate the thrusters each SRB had its own auxiliary power unit and hydraulic pumps.

At approximately 2 minutes and 8 seconds after launch, the SRBs had consumed their fuel and were jettisoned. At jettison, eight small separation rocket motors, four on the forward section and four on the aft section, fired for about one second to alter their trajectory to ensure there is no hazardous contact with the Orbiter or External Tank. At a predetermined altitude, three parachutes were deployed on each SRB assembly to reduce the velocity of their descent to less than 120 feet per second. Shortly after splashdown, 2 booster recovery ships, the Freedom Star and Liberty Star, arrived with crews to plug, drain and prepare the SRBs to be towed back to KSC for post-launch inspection, processing and preparation for transport back to ATK in Utah.

This recording project is part of the Historic American Engineering Record (HAER), a long-range program to document historically significant engineering, industrial, and maritime works in the United States. The HAER program is administered by the National Park Service, U.S. Department of the Interior. The Space Transportation System recording project was commissioned during 2011 by the Space Shuttle Program Transition and Retirement Office of the Johnson Space Center (JSC), with the guidance and assistance of Barbara Smolen, Integration Manager, JSC. The project was managed by Thomas Bahrzin, HAER Architect and Project Leader. The Space Transportation System Recording Project consisted of architectural documenters, John Wachtel, Iowa State; and Joseph Klein, Illinois Institute of Technology. This documentation is based on high-definition laser scans provided by Smart Geometrics, Houston, Texas, and documentation provided by NASA's Headquarters and Kennedy Space Center. Written historical and descriptive data was provided by Archaeological Consultants Inc., Sarasota, Florida. Large-format photographs were produced by NASA's Imaging Lab at Johnson Space Center with supplemental images provided by Jet Lowe, HAER photographer.
Space Transportation System
External Tank

The hydrogen tank, which was the bigger of the two tanks, could hold a maximum of about 230,000 pounds of hydrogen, or about 390,000 gallons. The smaller oxygen tank, located at the top of the ET, could hold a maximum of about 1,375,000 pounds of oxygen or 145,000 gallons. During powered flight the ET provided approximately 47,000 gallons per minute of hydrogen and approximately 18,000 gallons per minute of oxygen to all three Space Shuttle Main Engines (SSMEs) with a 60-40 mixture ratio, by weight, of liquid oxygen to liquid hydrogen.

In addition to containing and delivering cryogenic propellants to the Space Shuttle Main Engines the ET also served as the structural support for the attachment of the Orbiter and Solid Rocket Boosters. While the STS stack assembly is sitting on the Mobile Launch Platform (MLP) the ET transfers the weight of the Orbiter and RS-25s to the Solid Rocket Boosters (SRBs) which are attached to the MLP. At launch and ascent the ET absorbs the initial loads produced by the SSMEs and the SRBs. Despite its size and structural requirements the aluminum alloy skin of the ET is only one eighth of an inch thick in most areas. As with all of the other components of the STS stack assembly, the ET has undergone improvements during the STS operational lifespan. Most notably, was two weight-saving redesigns that made the ET lighter and stronger. The original version of the ET weighed 76,000 pounds empty. The first redesign, flown on STS-6, was the Lightweight ET which dropped 10,000 pounds from the original ET. The second redesign, flown on STS-91, was the Super Lightweight ET that dropped an additional 7,500 pounds from the Lightweight tank resulting in a weight of 58,500 pounds.

The ET is the only part of the stack assembly that is not reused. At approximately 8 minutes and 30 seconds after launch the propellant has been consumed and the SSMEs are shut down. The ET is no longer needed and it is jettisoned from the Orbiter. The effects of gravity pull the ET back into the Earth’s atmosphere where heat and friction cause it to break up over a remote part of the Pacific Ocean.

This recording project is part of the Historic American Engineering Record (HAER), a long-range program to document historically significant engineering, industrial, and maritime works in the United States. The HAER program is administered by the National Park Service, U.S. Department of the Interior. The Space Transportation System recording project was cosponsored during 2011 by the Space Shuttle Program Transition and Retirement Office of the Johnson Space Center (JSC), with the guidance and assistance of Barbara Severance, Integration Manager, JSC; Jennifer Grennan, Federal Preservation Officer, NASA Headquarters, and Ralph Allen, Historic Preservation Officer, Marshall Space Flight Center. The field work and measured drawings were prepared under the general direction of Richard O’Connor, Chief, Heritage Documentation Programs, National Park Service. The project was managed by Thomas Behrens, HAER Architect and Project Leader, The Space Transportation System Recording Project consisted of architectural fieldworkers, John Wachtel, Iowa State, and Joseph Klimek, Illinois Institute of Technology. This documentation is based on high-definition laser scans provided by Smart GeoMetrics, Houston, Texas and documentation provided by NASA’s Headquarters, Johnson Space Center, and Marshall Space Flight Center. Written historical and descriptive data was provided by Archaeological Consultants Inc., Sarasota, Florida. Large-format photographs were produced by NASA’s Imaging Lab at Johnson Space Center with supplemental images provided by Jet Lowe, HAER photographer.
EXTERNAL TANK ISOMETRIC
EXTERNAL TANK DETAILS
Space Transportation System
Space Shuttle Main Engine

The Space Shuttle used three Space Shuttle Main Engines (SSMEs) mounted to the orbiter. The SSME was designed and developed under a contract with the NASA Marshall Space Flight Center, Huntsville, Alabama. The contract was awarded in 1971 to the Rocketdyne Division of North American Rockwell Corp., Canoga Park, California. In late 1990, Pratt & Whitney purchased Rocketdyne from the Boeing Company. Rocketdyne was combined with the rocket engine contingent of Pratt & Whitney, West Palm Beach, Florida to form a division named Pratt & Whitney Rocketdyne.

The SSME was a large reusable liquid rocket engine which used liquid hydrogen as fuel and liquid oxygen as oxidizer. Both propellants were stored in the External Tank. The SSME operated using the staged-combustion cycle, meaning propellants were initially burned in preburners in order to power the high-pressure turbopumps and were then burned again at a higher mixture ratio in the main combustion chamber. This cycle yielded a specific impulse substantially higher than previous rocket engines thus minimizing volume and weight for the integrated vehicle. Along with high efficiency and low weight came system complexity, high turbopump speeds, high chamber pressures, and a high thrust-to-weight ratio of sixty-six at full power level.

The SSME had a nominal burn time of flight of approximately 8.5 minutes. The engines were required to operate at any power level between 75% and 100% of rated power level (RPL), though the majority of ascent was spent at 104.5% RPL. The engines were throttled down early in ascent to minimize the structural loads on the vehicle when maximum dynamic pressure was reached. The engines throttled down again near Main Engine Cut-Off when the thrust was reduced in order to avoid a 3-g (three times the force of gravity) acceleration on the crew and cargo. Operation at 105% RPL was required for several abort modes which were never used in flight. The engine employed closed-loop control on both chamber pressure and mixture ratio. The control system employed redundancy known as fail-safe/fall back which required the engines to operate normally for the first contingency (fail operational or fail safe) and then to shut down safely for the second failure (fail safe).

The SSMEs were attached to the vehicle's thrust structure via a gimbal bearing. This bearing provided an attachment point while allowing the engine to pivot on two axes. Each engine had two hydraulic actuators attached from the SSME main combustion chamber to the Orbiter's thrust structure. These were used for vehicle steering (roll, pitch, and yaw) movements. Vehicle steering was accomplished using both the SSMEs and Reaction Control System Booster (RCS) engines during the first stage operation and by the SSMEs alone after separation of the RCS.

The SSMEs operated successfully during all 115 flights due in large part to extensive ground testing which was used to establish acceptable limits, and to achieve acceptable limits. Over a million seconds of test and flight data was accumulated, The majority of the testing occurred at Stennis Space Center (SSC). Post-flight inspections and data assimilation were integral to understanding in-flight performance of the hardware.

This recording project is part of the Historic American Engineering Record (HAER), a long-range program to document historically significant engineering. Industrial, and machine works in the United States. The HAER program is administered by the National Park Service, U.S. Department of the Interior. The Space Transportation System recording project was cosponsored during 2001 by the Space Shuttle Program Transition and Retirement Office of the Johnson Space Center (JSC), with the guidance and assistance of Barbara Severance, Integration Manager, JSC. Jennifer Orman, Federal Preservation Officer, National Headquarters and Ralph Allen, Historic Preservation Officer, Marshall Space Flight Center.

Orbiter Discovery just after launch of STS-43 from Kennedy Space Center, Florida. Image courtesy of NASA Johnson Space Center. Photographer unknown.
The Space Shuttle Main Engine (SSME) was designed for 55 missions. The engines were generally referred to as the center (engine 1), left (engine 2), and right (engine 3). The SSMEs were 14 feet long and 7.5 feet in diameter at the nozzle exit. Each nozzle had an area ratio of 77.5:1. Each SSME weighed approximately 7,000 pounds.

The SSME utilized four turbopumps to boost the pressure of its cryogenic propellants for preburner and main combustion chamber injection. The design incorporated a controller with a health management system. The five main control valves operated under hydraulic pressure and had redundant pneumatic control for failure scenarios. Additionally, the engine featured a passive on-engine POGO oscillation suppression system attached to the low-pressure oxidizer duct (LPOD) to damp and prevent coupling of vehicle-to-engine low-cycle pressure oscillations.

Throughout its history, the SSME incorporated many design improvements. Most large changes were incorporated in block upgrades. Many limitations of the first manned orbital flight (FMOF) engines were addressed by the Phase I design, which first flew on STS-4. Post-Challenger Return-to-Flight (STS-26R) brought the first flight of Phase II, which included modifications to the turbopumps, main combustion chamber, and avionics. The Block I configuration which followed incorporated a new high-pressure oxygen turbopump, an improved powerhead, and a new heat exchanger. The Block I configuration was first flown on STS-70. Block II was first flown on STS-65. It incorporated a large-throat main combustion chamber reducing system internal pressures and temperatures. The last block upgrade was Block II, which added a new high-pressure fuel turbopump. Block II first flew on STS-104. The cumulative effects of these modifications were increased safety and reduced maintenance costs between flights. Predicted reliability improved by a factor of four over the life of the program, and maintenance on the Block II engine was 57% less than on the Phase II engines.